

It's the Problem Of the Day IPOD # 19 Convert the following by remembering that...

```
1 \; \text{MOL} = 6.02 \; \text{X} \; 10^{23} \; \text{Particles} \; (\text{Atoms, ions, molecules, formula units}) 1 \; \text{Mol} = 22.4 \; \text{L} \; \text{Of} \; \text{A} \; \text{Gas} 1 \; \text{Mol} = \text{Molar mass}
```

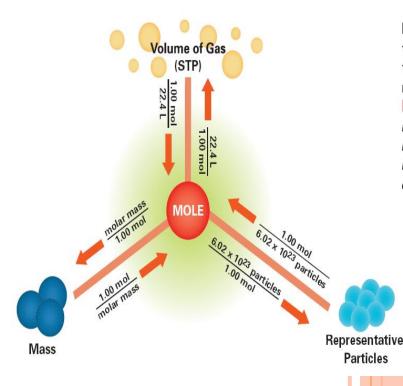
• How many molecules are in 0.56 mol of water?

• What volume does 0.335 mol of dicarbon hexahydride gas occupy at STP?

• How many moles of lead (II) chloride are in 1.57 grams?

It's the Problem Of the Day

IPOD # 20


CONVERT THE FOLLOWING BY REMEMBERING THAT...

 $1 \; MOL = 6.02 \; X \; 10^{23} \; PARTICLES$ (Atoms, ions, molecules, formula units)

1 MOL = 22.4 L OF A GAS

1 MOL = MOLAR MASS

• What is the volume, in liters, of 835 g of sulfur trioxide at STP?

• Calculate the number of formula units of ammonium nitrate in 5.78 moles?

• What is the mass of 1.25×10^{23} formula units of calcium carbonate?

CALCULATE THE PERCENT COMPOSITION OF EACH COMPOUND:

1) Copper (I) phosphate

2) Dihydrogen sulfide

Determine the Molecular formula of the following compound (Remember it starts by finding empirical formula):

- 50.7% C, 4.2% H, 45.1% O
- o molar mass of the molecule = 142 g

Write each of the following as a balanced equation

1.
$$AgNO_3 + H_2S \rightarrow Ag_2S + HNO_3$$

$$\operatorname{Zn}(OH)_2 + \operatorname{H}_3 PO_4 \rightarrow \operatorname{Zn}_3 (PO_4)_2 + \operatorname{H}_2 O$$

3. Iron (III) chloride + calcium hydroxide \rightarrow iron (III) hydroxide + calcium chloride

Write the reactants, state the reaction type, predict the products & balance the following reactions:

1. Type: _____ Sodium hydroxide + iron (III) nitrate \rightarrow

2. Type: _____ Zinc + silver (I) nitrate \rightarrow if a reaction occurs, zinc metal will have a +2 charge in a compound.

Write the reactants, state the reaction type, predict the products & balance the following reactions:

- 1. Type: _____ Magnesium nitride \rightarrow
- 2. Type: _____ C_7H_{16} + oxygen \rightarrow
- 3. Type: _____ Sulfuric acid + aluminum hydroxide \rightarrow
- 4. Type: _____ Potassium + oxygen \rightarrow
- 5. Type: _____ Magnesium + hydrobromic acid →

Start with a Balanced Equation & then solve...

1. Phosphorus and hydrogen can combine to form phosphine (PH_3). How many liters of phosphine are formed when 0.42 moles of hydrogen react with phosphorus?

2. How many molecules of oxygen gas are produced by the decomposition of 6.5 g of potassium chlorate? Potassium chloride is also a product.

Start with a Balanced Equation & then solve...

1. When 84.8 g of iron (III) oxide reacts with an excess of carbon monoxide, 58.0 g of solid metal iron is produced along with carbon dioxide gas. What is the percent yield of this reaction?

Start with a Balanced Equation & then solve...

- 1. Iron metal reacts with chlorine gas to produce iron (III) chloride. Suppose 5.0 g of iron is added to 10.0 g of chlorine gas.
 - a. What type of reaction does this represent?
 - b. Show which reactant is the limiting reactant.
 - c. Calculate the mass of product formed.
 - d. Calculate the mass of unreacted starting material that remains.
 - e. If only 13.98 g of iron (III) chloride is produced, what is the percent yield?

Start with a Balanced Equation & then solve...

- 1. Iron metal reacts with chlorine gas to produce iron (III) chloride. Suppose 5.0 g of iron is added to 10.0 g of chlorine gas.
 - a. What type of reaction does this represent?
 - b. Show which reactant is the limiting reactant.
 - c. Calculate the mass of product formed.
 - d. Calculate the mass of unreacted starting material that remains.
 - e. If only 13.98 g of iron (III) chloride is produced, what is the percent yield?