## Unit 4 - Chemical Quantities \& STOICHIOMETRY

IPOD Questions

It's the Problem Of the Day IPOD \# 19
Convert the following by remembering that...
1 MOL $=6.02 \times 10^{23}$ PARTICLES (ATOMS, IONS, MOLECULES, FORMULA UNITS)
$1 \mathrm{MOL}=22.4 \mathrm{~L}$ OF A GAS
1 MOL = MOLAR MASS

- How many molecules are in 0.56 mol of water?
- What volume does 0.335 mol of dicarbon hexahydride gas occupy at STP?
- How many moles of lead (II) chloride are in 1.57 grams?


## It's $^{\text {the }}$ Problem $\mathrm{Of} \mathrm{the}_{\mathrm{DAY}}$

 IPOD \# 20 CONVERT THE FOLLOWING BY REMEMBERING THAT...1 MOL $=6.02 \times 10^{23}$ PARTICLES (ATOMS, IONS, MOLECULES, FORMULA UNITS)
$1 \mathrm{MOL}=22.4 \mathrm{~L}$ OF A GAS
1 MOL $=$ MOLAR MASS

- What is the volume, in liters, of 835 g of sulfur trioxide at STP?

- Calculate the number of formula units of ammonium nitrate in 5.78 moles?
- What is the mass of $1.25 \times 10^{23}$ formula units of calcium carbonate?

It's the $\operatorname{Problem~} \mathrm{Of}_{\text {f the }} \mathrm{D}_{\mathrm{Ay}}$ IPOD \# 21

Calculate the percent Composition of each compound:

1) Copper (I) phosphate
2) Dihydrogen sulfide

## It's the Problem Of the $\mathrm{D}_{\mathrm{A}}$ IPOD \# 22

Determine the Molecular formula of the following COMPOUND (REMEMBER IT STARTS BY FINDING EMPIRICAL FORMULA):

- $50.7 \% \mathrm{C}, 4.2 \% \mathrm{H}, 45.1 \% \mathrm{O}$
- molar mass of the molecule $=142 \mathrm{~g}$


## It's the Problem Of the $\mathrm{D}_{\text {ay }}$

 IPOD \# 23Write each of the following as a balanced Equation
1.

$$
\mathrm{AgNO}_{3}+\quad \mathrm{H}_{2} \mathrm{~S} \rightarrow \quad \mathrm{Ag}_{2} \mathrm{~S}+\quad \mathrm{HNO}_{3}
$$

2. $\mathrm{Zn}(\mathrm{OH})_{2}+\quad \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \quad \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
3. Iron (III) chloride + calcium hydroxide $\rightarrow$ iron (III) hydroxide + calcium chloride

## It's the Problem Of the $\mathrm{D}_{\mathrm{A}}$

 IPOD \# 24
## Write the reactants, state the reaction type, predict THE PRODUCTS \& BALANCE THE FOLLOWING REACTIONS:

1. Type: $\qquad$ Sodium hydroxide + iron (III) nitrate $\rightarrow$
$\qquad$ Zinc + silver (I) nitrate $\rightarrow$ if a reaction occurs, zinc metal will have $a+2$ charge in a compound.

## It's the Problem Of the $\mathrm{D}_{\mathrm{Ay}}$

 IPOD \# 25
## Write the reactants, state the reaction type, predict THE PRODUCTS \& BALANCE THE FOLLOWING REACTIONS:

1. Type: $\qquad$ Magnesium nitride $\rightarrow$
2. Type: $\qquad$ $\mathrm{C}_{7} \mathrm{H}_{16}+$ oxygen $\rightarrow$
3. Type: $\qquad$ Sulfuric acid + aluminum hydroxide $\rightarrow$
4. Type: $\qquad$ Potassium + oxygen $\rightarrow$
5. Type: $\qquad$ Magnesium + hydrobromic acid $\rightarrow$

## It's the Problem Of the $\mathrm{D}_{\text {ay }}$

 IPOD \# 26
## Start with a Balanced Equation \& then solve...

1. Phosphorus and hydrogen can combine to form phosphine $\left(\mathrm{PH}_{3}\right)$. How many liters of phosphine are formed when 0.42 moles of hydrogen react with phosphorus?
2. How many molecules of oxygen gas are produced by the decomposition of 6.5 g of potassium chlorate? Potassium chloride is also a product.

## It's the $\mathrm{P}_{\text {roblem }} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

 IPOD \# 27
## Start with a BaLanced Equation \& then solve...

1. When 84.8 g of iron (III) oxide reacts with an excess of carbon monoxide, 58.0 g of solid metal iron is produced along with carbon dioxide gas. What is the percent yield of this reaction?

## It's the $\mathrm{P}_{\text {roblem }} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

 IPOD \# 28
## Start with a Balanced Equation \& then solve...

1. Iron metal reacts with chlorine gas to produce iron (III) chloride. Suppose 5.0 g of iron is added to 10.0 g of chlorine gas.
a. What type of reaction does this represent?
b. Show which reactant is the limiting reactant.
c. Calculate the mass of product formed.
d. Calculate the mass of unreacted starting material that remains.
e. If only 13.98 g of iron (III) chloride is produced, what is the percent yield?

## It's the $\mathrm{P}_{\text {roblem }} \mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

 IPOD \# 28
## Start with a Balanced Equation \& then solve...

1. Iron metal reacts with chlorine gas to produce iron (III) chloride. Suppose 5.0 g of iron is added to 10.0 g of chlorine gas.
a. What type of reaction does this represent?
b. Show which reactant is the limiting reactant.
c. Calculate the mass of product formed.
d. Calculate the mass of unreacted starting material that remains.
e. If only 13.98 g of iron (III) chloride is produced, what is the percent yield?
